论文部分内容阅读
为提高分类器识别率,减少标注样本使用数量,提出一种基于朴素贝叶斯的半监督学习方法。研究基于该方法的分类器分类效果,采用遥感影像数据作为训练和测试集,与基于朴素贝叶斯的全监督学习分类器分类效果作比较。实验结果表明,当标注样本与非标注样本比例在1:2~1:9时,半监督学习可以利用比全监督学习更少的标注样本,达到更高的分类精度。