论文部分内容阅读
传统的阈值分割算法只考虑到图像的灰度信息,而忽略了灰度的空间分布以及分割后图像与原图像之间的关系。本文从分割图像与原图像的内在联系出发,提出了一种新的基于FCM算法与互信息量技术相结合的分割算法,即FCM-MI算法。首先利用FCM算法确定全局阈值作为初值,以互信息量为目标函数,在小范围内计算分割图像与原图像的互信息量,互信息量达到最大时的阈值即为最优值。对大量医学图像和车牌图像进行的实验结果表明,本算法所得到的目标图像的边界特征保持完好,虚假目标信息大大降低,图像边界细腻、连续且定位性能好。