论文部分内容阅读
提取有效特征对高维数据的模式分类起着关键的作用.无监督判别投影,通过最大化非局部散度和局部散度之比,在数据降维和特征提取上表现出较好的性能,但是它是一种非监督学习算法,并且存在小样本问题.针对这些问题,提出了监督化拉普拉斯判别分析,算法在考虑非局部散度和局部散度时考虑了样本的类别信息;通过丢弃总体拉普拉斯散度矩阵的零空间,并将类内拉普拉斯散度矩阵投影到总体拉普拉斯散度矩阵的主空间中,然后在该空间中进行特征问题的求解,从而避免了小样本问题.通过理论分析,该算法没有任何判别信息损失,同时在计算上效率也较