论文部分内容阅读
为了通过预测大气环境的质量和发展变化,来寻求有效地控制和改善环境质量的相应措施,选用英国伦敦马里波恩监测站PM2.5的小时平均浓度监测资料,采用贝叶斯归一化训练算法和提前终止法泛化改进的BP神经网络模型,预报PM2.5的24 h内的各小时浓度.结果表明,采用本方法进行空气污染预报,预测相对误差为20%~49%,提高了预报网络的泛化能力.