论文部分内容阅读
针对现有的固体氧化物燃料电池(SOFC)模型过于复杂,难以满足工程上对SOFC系统实时控制设计的需要,提出了利用遗传算法(GA)优化径向基函数(RBF)神经网络实现对SOFC电堆建模。在建模过程中,利用遗传算法优化RBF神经网络的输出权值及高斯基函数的中心向量和基宽向量,采用优化后的参数作为网络初始值,然后利用梯度下降法对各参数进行调整。通过仿真对该建模的有效性和建模精度进行了检验。