论文部分内容阅读
针对柔性线路板(FPC)焊盘表面的缺陷检测,建立了一种利用粒子群算法(PSO)进行参数寻优的PSO-SVM分类识别模型。首先通过OTSU法将焊盘从原始图像中分割出来,然后对其5种表面缺陷从形状、灰度、纹理三个方面提取了14维特征,接着用粒子群算法方法对支持向量机的参数优化以获得较高的识别准确率,最后对缺陷样本进行分类识别,并将其与GS-SVM和BP神经网络分类性能进行对比。实验证明了该方法可以对焊盘缺陷进行准确的分类识别。