论文部分内容阅读
利用深度神经网络对小儿肺炎图片进行识别分类,以提高诊断的准确性和自动性。本研究利用融合了注意力机制和残差机制的预训练模型DenseNet121对特征进行训练。对网络结构加入全局平均池化层和Dropout层以防止过拟合,采用交叉熵损失函数以避免学习速率降低及梯度弥散问题,利用迁移学习减少训练参数从而节省训练时间,同时对训练数据做了数据增强。该成果提高了小儿肺炎诊断的识别率。