论文部分内容阅读
为了将海量的在线音乐数据高效地进行归类,并帮助用户获取最适合的音乐风格,提出了一种基于卷积神经网络的深度学习分类算法并和传统机器学习的分类算法进行比较。首先,将原始音乐数据集进行预处理后进行特征提取和特征构造操作得到了多种音乐特征,使用传统的机器学习分类模型进行仿真实验,然后将原始音乐数据集转变成Mel频谱图输入到自建的卷积神经网络模型中进行仿真实验,最后在前期实验的基础上参考AlexNet和VGG16经典模型对卷积神经网络结构进行优化和改进,改进后的分类模型平均准确率接近91%。实验结果表明深度学习分类模型在处理此类问题上可以减少原始音乐数据的预处理工作并提高音乐流派分类的准确率。