【摘 要】
:
离体构建生物组织和器官一直以来都是医学界和工程界共同面临的重要难题.由于三维组织结构成型复杂、微环境控制难度大、商业应用下的生产效率和可重复性等因素限制,传统制造方法很难实现生物组织和器官的有效构建.医学模型和生物相容性支架打印技术已发展较为成熟,但相对固定的加工工艺限制了其在活性生物材料打印领域的拓展;4D生物打印技术的概念提出较晚,重点在于产品的可编程性变形,但有关响应性材料的研究仍然较少.采用生物活性物质和生物兼容性材料作为打印墨水的生物3D打印技术,在复杂内部型腔和外部结构的构建方面优势凸显,可以
【机 构】
:
哈尔滨工业大学机器人技术与系统国家重点实验室 哈尔滨 150080;哈尔滨工业大学机电工程学院 哈尔滨 150080;哈尔滨工业大学机电工程学院 哈尔滨 150080;内蒙古科技大学生命科学与技术学院
论文部分内容阅读
离体构建生物组织和器官一直以来都是医学界和工程界共同面临的重要难题.由于三维组织结构成型复杂、微环境控制难度大、商业应用下的生产效率和可重复性等因素限制,传统制造方法很难实现生物组织和器官的有效构建.医学模型和生物相容性支架打印技术已发展较为成熟,但相对固定的加工工艺限制了其在活性生物材料打印领域的拓展;4D生物打印技术的概念提出较晚,重点在于产品的可编程性变形,但有关响应性材料的研究仍然较少.采用生物活性物质和生物兼容性材料作为打印墨水的生物3D打印技术,在复杂内部型腔和外部结构的构建方面优势凸显,可以实现器官组织的个性化定制,并高效生成三维活性构建体,在组织工程中的应用潜力巨大.着眼于生物3D打印中关键技术的发展态势,重点分析面向不同器官组织和功能性支架的生物3D打印机理及应用现状,并探讨其在发展过程中需要面临的挑战和仍需注重解决的问题,希望能为后续生物3D打印技术研究工作的大规模推进提供参考.
其他文献
针对球阀结构高速开关阀动态特性受供油压力影响大的问题,提出自适应供油压力变化的高速开关阀控制策略,通过计算不同供油压力下的高速开关阀临界启闭电流,结合电流反馈机制,实现多个激励电压源之间的自动切换,最大程度上维持了高速开关阀在变供油压力下的动态特性.理论分析验证了供油压力对高速开关阀的动态特性有较大影响.仿真和试验都达到了控制策略的预期效果,结果表明,与单电压驱动方法相比,自适应供油压力变化的高速开关阀控制策略在5~20 MPa的供油压力变化范围内,能有效减少高速开关阀总启闭时间56.9%~75.8%,扩