论文部分内容阅读
介绍了将神经网络方法应用于通信信号的分选和识别的初步研究结果;选择了二值自适应共振(ART1)神经网络完成对输入信号的分类,确定输入信号类型是否已被网络存储,发现新出现的信号并标记;再采用多层前馈误差反向传播(BP)神经网络完成每一标记信号的识别,即识别该信号类型。比较了神经网络分类识别器和树形分类器的性能,并给出了计算机模拟结果。结果表明,基于神经网络的分类识别器的性能远优于传统技术分类器。