论文部分内容阅读
深度学习模型严重依赖于大量人工标注的数据,使得其在数据缺乏的特殊领域内应用严重受限。面对数据缺乏等现实挑战,很多学者针对数据依赖小的弱监督学习方法开展研究,出现了小样本学习、零样本学习等典型研究方向。对此,本文主要介绍了弱监督学习方法条件下的小样本学习和零样本学习,包括问题定义、当前主流方法以及实验设计方案,并对典型模型的分类性能进行对比。然后,给出零-小样本学习的问题描述,总结研究现状和实验设计,并对比典型方法的性能。最后,基于当前研究中出现的问题对未来研究方向进行展望,包括多种弱监督学习方法的融