论文部分内容阅读
提出了一种基于实数编码的量子遗传算法。该方法用量子比特构成染色体,用量子旋转门进行染色体更新,用量子非门进行染色体变异。针对量子旋转门的旋转角方向的选择,提出了一种简易快捷的新方法。基于适应度函数的梯度信息,构造了旋转角大小的计算公式。该方法将每一量子住的两个概率幅,看作上下两个并列的基因,每条染色体包含两条并列的基因链,每条基因链代表一个优化解。在染色体数目相同时,可显著加速优化进程,提高获得全局最优解的概率。模糊控制器参数优化问题的仿真结果表明,该方法在搜索能力方面明显优于普通量子遗传算法。