论文部分内容阅读
姿态变化是影响人脸识别率的一个至关重要的因素,也是人脸识别问题中一个待解决的难题。当测试样本具有一定的姿态变化后,识别率会急剧下降。针对此问题,提出了利用正弦变换(Sine Transform,ST)对待识别的姿态图像进行姿态校正,虚拟出对应的正面人脸的方法。使用经典算法进行特征提取、最近邻分类器进行分类识别验证,得到了较好的结果。在FERET人脸库上的实验表明,该方法能够在一定程度上克服姿态变化的影响,平均识别率最高可提高17%。