论文部分内容阅读
针对全卷积孪生网络目标跟踪算法(Siamfc)在严重遮挡、旋转、光照变化、尺度变化等情况下容易出现跟踪失败的问题,提出了一种融合扰动感知模型的孪生神经网络目标跟踪算法。将孪生神经网络提取到的低层结构特征与高层语义特征进行有效融合,以提高特征的表征能力;利用模板自适应策略在线更新模板,以提高算法在遮挡和旋转等情况下跟踪的精确度。与此同时,将基于颜色直方图特征的扰动感知模型引入到算法中,通过加权融合的方式获得目标响应得分图,以此估计出目标的位置,并利用相邻帧尺度自适应策略估计出目标最佳尺度。为验证本文算