论文部分内容阅读
出行路径推荐是智能交通领域的重要研究内容之一.传统路径推荐方法往往基于路径最短或通行时间最短等单一因素进行路径推荐,而忽略了城市人群出行模式对路径推荐过程的影响.针对上述问题,提出了一种基于频繁轨迹序列模式的路径推荐方法,在数据预处理阶段基于历史轨迹数据库挖掘城市不同时段的频繁序列模式,并以此构建频繁路径序列模式库.在路径推荐阶段,对于给定起止点后确定的一组候选路径集合,利用所提出的长短模式权重评估模型对其进行量化评估并进行排序.然后,取出其评估值为Top-n的路径为用户进行推荐.通过4组模拟场景对推荐结果进行分析,结果表明该推荐方法具备合理性,同时将推荐结果和传统的最短路径和测试集比较分析,证明其推荐的路径更优,与传统的路径推荐算法相比其运行速度也更快.