论文部分内容阅读
1 概述
(1)测量依据:依据JJG272—2007《空盒气压表和空盒气压计》检定规程。
(2)环境条件:温度波动不大于1.0℃。
(3)计量标准:数字压力控制器,测量范围200kPa,其最大允许误差为:±0.01%。
(4)被测对象:空盒气压表,测量范围(800~1060)hPa、(500~1060)hPa。
(5)测量方法:将空盒气压表放入一个密闭的容器内,通过数字压力控制器对其控制,升压和降压逐点进行比较测量。
2 数学模型
2.1数学模型
[δ被=P被-P标] (1)
或[P被=P标+δ被] (2)
式中:[δ被]—被检表示值误差;
[P被]—检定点上被检表示值;
[P标]—数字压力控制器产生的标准压力值。
δ被包含了该表的示值基本误差及各种条件影响的附加误差,如所谓的“标准环境条件”的微小变化的附加影响。例如环境温度对被检表的影响、指针示值的估读不准确等。除检定准确性外,其余误差来源(不确定度贡献)应独立不相关地分析出来,逐项计算(估算)其贡献。按此分析,可将式(2)展开:
[P被][=P标+δ被+ΔP评估=P标+δ被+θR] (3)
式中:[θ]—被检表分度值;
[R]—被检表估读分辨率量;
式(3)为本分析的数学模型。
2.2不确定度传播律
[uc2][=u12+u22+u32]
2.3计算灵敏系数
求式(3)对各误差来源量的偏导得出各项的传播系数:
[?P被/?P标=1];[?P被/?δ被=1];[?P被/?R=1]θ
3 标准不确定度的评定
测量对象为测量范围(800~1060)hPa,分度值为1hPa的空盒气压表。在其示值检定中用误差最大点的数据1060hPa进行分析计算。
3.1[P标]项
由标准压力计引入的来源,属B类,准确度级别为0.01级,服从均匀分布,故:
[u1=?P被?P标×0.01%×20003]=0.12hPa
3.2[δ被]项
该项来源可从重复性中算得:
对被检表在1060hPa点上重复测量10次得1060.2、,1060.2,1060.2,1060.2,1060.2,1060.1,1060.2,1060.1,1060.2,1060.2。
其标准差s=0.05hPa
得到[u2=0.05]hPa
3.3[ΔP评估]项
对空盒气压表,要求估读至分度的1/10。由于操作者的习惯视力及指针与刻度盘间有距离,视线可能产生偏角,估读不可靠性以1/10分度估计,该误差分布遵从均匀分布。
[被检表分度θ=1]hPa
[u4=?P被?R×1103=0.13]=0.06hPa
4 标准不确定度分量表
5 合成标准不确定度[uc]的评定
以上各分量独立不相关,按方和根得合成标准不确定度为:
[uc=0.062+0.122]=0.14hPa
6 扩展不确定度的确定
由于[u3]和[u1]为主要分量,其合成为梯形分布,β=(0.2-0.1)/(0.2+0.1)=0.33,故[k95=1-(1-p)(1-β2)1+β26]=1.84。
[U95=k95×uc=1.84×0.14]=0.3hPa
7 对使用0.01级数字压力控制器标准装置校准空盒气压表的测量不确定度评定
根据规程规定,常规校准应对空盒气压表的800hPa、820hPa、840hPa、860hPa、880hPa、900hPa、920hPa、940hPa、960hPa、980hPa、1000hPa、1020hPa、1040hPa、1060hPa共14个点进行校准,其测量不确定度见表1。
8 校准和测量能力(CMC)
空盒气压表校准项目的CMC为:(800~1060)hPa,[U95]=0.3hPa,[k95]=1.84。
(1)测量依据:依据JJG272—2007《空盒气压表和空盒气压计》检定规程。
(2)环境条件:温度波动不大于1.0℃。
(3)计量标准:数字压力控制器,测量范围200kPa,其最大允许误差为:±0.01%。
(4)被测对象:空盒气压表,测量范围(800~1060)hPa、(500~1060)hPa。
(5)测量方法:将空盒气压表放入一个密闭的容器内,通过数字压力控制器对其控制,升压和降压逐点进行比较测量。
2 数学模型
2.1数学模型
[δ被=P被-P标] (1)
或[P被=P标+δ被] (2)
式中:[δ被]—被检表示值误差;
[P被]—检定点上被检表示值;
[P标]—数字压力控制器产生的标准压力值。
δ被包含了该表的示值基本误差及各种条件影响的附加误差,如所谓的“标准环境条件”的微小变化的附加影响。例如环境温度对被检表的影响、指针示值的估读不准确等。除检定准确性外,其余误差来源(不确定度贡献)应独立不相关地分析出来,逐项计算(估算)其贡献。按此分析,可将式(2)展开:
[P被][=P标+δ被+ΔP评估=P标+δ被+θR] (3)
式中:[θ]—被检表分度值;
[R]—被检表估读分辨率量;
式(3)为本分析的数学模型。
2.2不确定度传播律
[uc2][=u12+u22+u32]
2.3计算灵敏系数
求式(3)对各误差来源量的偏导得出各项的传播系数:
[?P被/?P标=1];[?P被/?δ被=1];[?P被/?R=1]θ
3 标准不确定度的评定
测量对象为测量范围(800~1060)hPa,分度值为1hPa的空盒气压表。在其示值检定中用误差最大点的数据1060hPa进行分析计算。
3.1[P标]项
由标准压力计引入的来源,属B类,准确度级别为0.01级,服从均匀分布,故:
[u1=?P被?P标×0.01%×20003]=0.12hPa
3.2[δ被]项
该项来源可从重复性中算得:
对被检表在1060hPa点上重复测量10次得1060.2、,1060.2,1060.2,1060.2,1060.2,1060.1,1060.2,1060.1,1060.2,1060.2。
其标准差s=0.05hPa
得到[u2=0.05]hPa
3.3[ΔP评估]项
对空盒气压表,要求估读至分度的1/10。由于操作者的习惯视力及指针与刻度盘间有距离,视线可能产生偏角,估读不可靠性以1/10分度估计,该误差分布遵从均匀分布。
[被检表分度θ=1]hPa
[u4=?P被?R×1103=0.13]=0.06hPa
4 标准不确定度分量表
5 合成标准不确定度[uc]的评定
以上各分量独立不相关,按方和根得合成标准不确定度为:
[uc=0.062+0.122]=0.14hPa
6 扩展不确定度的确定
由于[u3]和[u1]为主要分量,其合成为梯形分布,β=(0.2-0.1)/(0.2+0.1)=0.33,故[k95=1-(1-p)(1-β2)1+β26]=1.84。
[U95=k95×uc=1.84×0.14]=0.3hPa
7 对使用0.01级数字压力控制器标准装置校准空盒气压表的测量不确定度评定
根据规程规定,常规校准应对空盒气压表的800hPa、820hPa、840hPa、860hPa、880hPa、900hPa、920hPa、940hPa、960hPa、980hPa、1000hPa、1020hPa、1040hPa、1060hPa共14个点进行校准,其测量不确定度见表1。
8 校准和测量能力(CMC)
空盒气压表校准项目的CMC为:(800~1060)hPa,[U95]=0.3hPa,[k95]=1.84。