论文部分内容阅读
该文探讨了利用相空间重构和支持向量机进行衰落信道非线性预测算法。该算法基于多径衰落信道具有混沌行为,利用坐标延迟理论,重建衰落信道系数的相空间,再根据混沌吸引子的稳定性和分形性,在相空间中通过递归最小二乘支持向量机(RLS-SVM)进行预测。该算法对原始数据可以进行更平滑的处理,在噪声环境下预测的时间范围更长。对时间跨度为63.829ms的衰落系数进行了预测,仿真结果表明,在信噪比为15dB时,预测结果优于AR算法。