论文部分内容阅读
针对新生儿的疼痛与非疼痛面部表情识别,提出将Gabor变换和支持向量机(SVM)相结合的分类识别方法。对归一化后的大小为112pixel×92pixel的新生儿面部图像进行二维Gabor小波变换,提取出412160维Gabor特征;针对Gabor特征向量维数高、冗余大的特点,采用Adaboost算法作为特征选择工具,去除冗余的Gabor特征,从412160维特征中选取出900维Gabor特征;对选取出的Gabor特征用SVM进行疼痛表情的分类识别。该方法综合运用Gabor特征对于面部表情的良好表征能