论文部分内容阅读
考虑数据丢失下非线性多智能体系统的一致性跟踪问题。假设多智能体系统使用固定网络通信拓扑结构,由于通信网络自身限制导致多智能体系统中存在数据丢失现象。将数据丢失现象描述为取值0/1的随机伯努利序列,设计分布式一致性跟踪误差,提出该系统在数据丢失下的P型迭代学习控制算法。采用压缩映射的方法给出收敛性条件,并在理论上分析了跟踪误差的收敛性。仿真结果表明,提出的算法可以实现该系统在有限时间区间上对期望轨迹的完全跟踪,验证了算法的有效性。