论文部分内容阅读
目的分析了传统分层卡尔曼滤波融合算法,指出传统卡尔曼滤波融合算法不能很好地提高跟踪精度且算法复杂的缺陷,提出了一种加权分层卡尔曼滤波融合算法,方法应用理论分析和蒙特卡洛仿真方法,对传统融合算法和新算法进行比较,并给出了各种情况下均方根误差的统计值比较,结果分层融合算法并不优于加权平均和反馈加权平均算法,加权及反馈滤波融合算法原理简单、数据处理量小、速度快、容错性好,结论加权分层融合算法特别适用于失效传感器的处理,特别当一传感器有较大的绝对误差和相对误差或与其它的传感器的采样周期略有不同和与其它传感器采样不