,Modeling information exchange between living and artificial cells

来源 :定量生物学(英文版) | 被引量 : 0次 | 上传用户:amavis
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
Background:The tools of synthetic biology have enabled researchers to explore multiple scientific phenomena by directly engineering signaling pathways within living cells and artificial protocells.Here,we explored the potential for engineered living cells themselves to assemble signaling pathways for non-living protocells.This analysis serves as a preliminary investigation into a potential origin of processes that may be utilized by complex living systems.Specifically,we suggest that if living cells can be engineered to direct the assembly of genetic signaling pathways from genetic biomaterials in their environment,then insight can be gained into how naturally occurring living systems might behave similarly.Methods:To this end,we have modeled and simulated a system consisting of engineered cells that control the assembly of DNA monomers on microparticle scaffolds.These DNA monomers encode genetic circuits,and therefore,these microparticles can then be encapsulated with minimal transcription and translation systems to direct protocell phenotype.The modeled system relies on multiple previously established synthetic systems and then links these together to demonstrate system feasibility.Results:In this specific model,engineered cells are induced to synthesize biotin,which competes with biotinylated,circuit-encoding DNA monomers for an avidinized-microparticle scaffold.We demonstrate that multiple synthetic motifs can be controlled in this way and can be tuned by manipulating parameters such as inducer and DNA concentrations.Conclusions:We expect that this system will provide insight into the origin of living systems as well as serve as a tool for engineering living cells that assemble complex biomaterials in their environment.
其他文献
<正>一我出生在四川省青川县,回族,父亲是县供销社的职员,母亲是农民。1994年,我考入了四川省内江艺体师范,学习油画和儿童美术教育,毕业后,分配到青川三锅中学教书。工作之
杂种优势利用是作物增产的一个重要途径。自20世纪30年代杂种优势在玉米中应用获得高产以来,其在农作物生产中得到广泛的应用并取得了显著的增产效果。然而一个世纪以来关于作物杂种优势产生机制仍不清楚。至20世纪80年,人们开始从分子水平来探讨作物杂种优势的分子机理,证实了基因表达与杂种优势存在关系。而作物基因组DNA甲基化修饰是调节基因表达的一种重要途径,因而本研究从检测油菜基因组DNA甲基化状态来探索
木薯(Manihot esculenta Crantz)是大戟科重要的能源作物,其块根淀粉含量占块根鲜重的26%~34%,干物质含量占块根鲜重的35%~45%,具有高淀粉积累、高生物量、耐旱、耐贫瘠等优点。木薯是一种可以长期无性繁殖作物,其有性世代为异花授粉,其基因型高度杂合,这种杂合性虽然带来了遗传变异的多样性,但也给木薯育种工作带来了困难。随着生物技术的发展,借助分子遗传标记,对数量性状基因座
本研究从烷化剂N-甲基N-亚硝基脲(MNU)处理的韩国粳稻品种Hwacheong突变体库中,经筛选得到一个稳定遗传粉质胚乳突变体flo(t)。首先对该突变体进行基本表型鉴定及理化性质分析,然后对淀粉的理化性质和结构特性进行分析,并利用图位克隆手段对目标基因进行精细定位、基因克隆和功能验证分析。主要实验结果如下:1.flo(t)突变体籽粒的胚乳表现为白色不透明粉质状,突变体种子粒长没有明显变化,粒宽
Background:Recently we proposed a quantum theory on the conformational change of biomolecule,deduced several equations on protein folding rate from the first pr