论文部分内容阅读
Disuccinimidyl suberate (DSS) intramolecularly cross-linked hemoglobin (Hb) was developed as a novel red blood cell substitute. A multi-angle laser light scattering detector coupled with size exclusion HPLC was applied to determine the molecular weight of the modified Hb. SDS-PAGE was also used as a complement. It was proved that 83.8% of the product was intramolecularly cross-linked Hb with weight-average molecular weights (Mw) of 67.5 kD, 12% was dimeric Hb with Mw of 146.6 kD, and 4.2% was trimeric Hb with Mw of 306.4 kD. The tetramer structure of the cross-linked Hb was stable as shown in size-exclusion chromatography using a mobile phase containing 1 mol/L MgCI2. Analysis by LC-MS demonstrated that the reaction of DSS with Hb mainly took place between the two a subunits within a Hb molecule, resulting in stabilization of the tetramer structure. However, the cross-linking was not site-specific. The P50 of the cross-linked Hb decreased from 21.8 mmHg to 14.3 mmHg, and the Hill coefficient decreased from 2.22 to 1.41. Result of isoelectric focusing showed that the pi of DSS cross-linked Hb was in the range of 4.6-5.2, similar to that of serum albumin. The safety of DSS cross-linked Hb was favored by animal tests on rats and guinea pigs. Exchange transfusion experiment with DSS cross-linked Hb using rats as a model indicated no pressor effect or other significant side effects. The characteristics and properties of DSS cross-linked Hb were also compared with that of diaspirin cross-linked Hb reported in the literature.
A multi-angle laser light scattering detector coupled with size exclusion HPLC was applied to determine the molecular weight of the modified Hb. SDS- It was proved that 83.8% of the product was intramolecularly cross-linked Hb with weight-average molecular weights (Mw) of 67.5 kD, 12% was dimeric Hb with Mw of 146.6 kD, and 4.2% was trimeric Hb with Mw of 306.4 kD. The tetramer structure of the cross-linked Hb was stable as shown in size-exclusion chromatography using a mobile phase containing 1 mol / L MgCI2. Analysis by LC-MS demonstrated that the reaction of DSS with Hb mainly took place between the two subunits within a Hb molecule, resulting in stabilization of the tetramer structure. However, the cross-linking was not site-specific. The P50 of the cross-linked Hb decreased from 21.8 mmHg to 14.3 mmHg, and the Hill coeff icient decreased from 2.22 to 1.41. Result of isoelectric focusing showed that the pi of DSS cross-linked Hb was in the range of 4.6-5.2, similar to that of serum albumin. The safety of DSS cross-linked Hb was favored by animal tests on rats and guinea pigs. Exchange transfusion experiment with DSS cross-linked Hb using rats as a model indicated no pressor effect or other significant side effects. The characteristics and properties of DSS cross-linked Hb were also compared with that of diaspirin cross-linked Hb reported in the literature.