论文部分内容阅读
从全国24个省(市)收集到222个秸秆样品,包括172个稻秸样品和50个麦秸样品。采用近红外光谱技术,结合主成分回归、偏最小二乘回归和改进的偏最小二乘回归建立了秸秆热值的定量分析校正模型。近红外光谱模型的建立与优化过程中使用了不同的散射校正方法和光谱导数处理来帮助改善模型精度。对得到的54个模型采用统计学的方法分析外部验证的结果,通过比较外部验证的系统偏差(Bias)和Bias校正的预测标准差(SEP(C)),考察了不同光谱预处理和回归方法对秸秆热值的近红外模型预测性能的影响。结果表明:近红外光谱技术能够