论文部分内容阅读
为提高小样本轴承故障预测的精度,提出了灰色关联分析的神经网络预测模型。利用神经网络训练样本数据,并使用灰色关联分析不断调整其隐含层节点数,以寻找到最优的数据解,完成训练过程;基于已训练好的模型对未来时间点的运行状态进行分析,并根据设备的理论诊断标准实现故障预测。将提出的模型与同样可预测小样本波动数据的灰色马尔科夫预测模型进行实例应用对比,结果显示,灰色关联分析的神经网络预测模型效果明显优于灰色马尔科夫模型。