论文部分内容阅读
由于图像噪声的存在,使得利用传统的极值检测算法通常会使要提取的显著极值淹没在大量的噪声极值中;同时由于先验知识的缺乏,采用普通滤波技术也往往不能很好的滤除噪声,反而会破坏图像的关键结构。本文提出了一种基于属性形态学分析的图像显著极值检测算法。该算法可以在不需要对图像进行滤波的前提下,从数学形态学的角度对图像极值的显著性进行计算和评估,从而能够较好地提取出显著的极值。在沉浸模拟算法的基础上,给出了基于属性形态学分析显著极值检测的快速算法实现,并将其成功应用在视觉注意选择和独立运动目标检测上。实践证明,