论文部分内容阅读
针对黏稠流质食品的自动化灌装中,传统灌装成品缺陷检测方法难以同时对多目标高速检测的难题,提出一种基于YOLOv4目标检测算法的轻量级灌装成品缺陷检测方法。MobileNetV3主干特征提取网络能对输入样本进行轻量级特征提取;增强特征提取网络采用深度可分离卷积策略,以降低参数计算量,然后通过设计的全面路径聚合网络(FPANet)和引入的通道注意力机制(ECA)提升增强特征提取网络对于目标特征的靶向表达。将设计的轻量化网络进行模型训练和精度测试,并在同一数据集下与其它目标检测算法进行对比,以分析本文方法