论文部分内容阅读
针对当前算法推荐结果与用户感知兴趣点拟合度低,导致推荐可信度低的问题,提出基于矩阵分解的感知兴趣点智能推荐算法。先在典型的社会网络中,对感知兴趣点推荐问题进行描述;建立感知兴趣点模型,构建用户范围矩阵和感知兴趣点的影响力矩阵,提取出用户对不同感知兴趣点的偏好,随后计算感知兴趣点在不同区域中的影响力,并修正感知兴趣点影响力函数,通过对其权重的计算,获取用户对感知兴趣点的访问次数、时间的总和以及感知兴趣点集合。最后计算感知兴趣点智能推荐时间的复杂度,利用矩阵分解思想最终实现了对感知兴趣点的智能推荐。实验