论文部分内容阅读
针对机理模型中参数易受环境影响,结果常常不准,而数据模型对于复杂系统外推能力差的情况,提出了以机理模型为基础,以数据模型为补充,利用数据模型对机理模型的预测结果进行误差修正的方法。将该方法用于菌体浓度的预测,误差修正模型采用RBF神经网络,包含了影响菌体浓度的主要理化因素:温度、溶解氧和pH,以实际测量值为目标对该网络进行训练。训练好的神经网络用来对机理模型的输出进行修正。试验数据表明该方法能有效提高菌体浓度的预测精度。