论文部分内容阅读
【摘 要】深基坑工程由于受多种因素的影响,已成为岩土工程中的重点和难点。为确保基坑安全,除了对深基坑的围护支撑设计和施工方案充分论证外,另一个重要方面是制定出周密而又系统化的基坑监测及周围道路管线、相邻建筑物的监测方案,实行信息化施工,即以监测数据指导旋工。
【关键词】深基坑工程;现场监测
近年来,随着我国经济水平和城市建设的迅速发展,开发和利用地下空间日显重要。国内兴建了许多大型地下设施,如城市地铁、地下商场、污水处理工程、过江隧道工程等。伴随着深基坑工程规模和深度的不断加大,开挖深度超过10m的基坑已属常见,地铁车站的开挖深度达20m。大量深基坑工程的出现迫切需要监测技术理论的迸一步提高,深基坑工程正确、科学的监测设计,配合切实有效的信息化施工管理,对确保基坑支护结构和环境安全及加快工程建设进度至关重要。
1 基坑工程现场监测的主要目的
由于基坑的复杂性,在基坑施工过程中,只有对其围护结构、周围土体和相邻建筑物进行综合、系统的监测,才能对工程情况有全面地了解,确保工程顺利进行。旋工监测的任务是配合施工过程动态测量围护结构变形及受力的变化情况,把测量结果及时反馈于施工过程,指导基坑开挖和支护结构施工,保证基坑支护结构和相邻建筑物的安全,总结施工经验,为完善设计提供依据。现场监测是确保实际施工安全可靠进行的必要和有效手段,对于验证原设计方案和局部进行调整施工参数、积累数据、总结经验、改进和提高设计水平具有相当的实际指导意义。
2 基坑工程现场监测技术
2.1 国内的基坑工程现场监测内容
基坑开挖期间施工现场监测的内容分为两大部分,即支护结构本身(围护结构)的稳定性和相邻环境(周围环境)的变化。
(1)围护结构的主要监测内容:围护结构完整性及强度监测;围护结构项部水平位移监测;围护结构倾斜监测;围护结构沉降监测;围护结构应力监测。
(2)周围环境监测
周围环境的监测主要包括:邻近建筑物沉降、倾斜和裂缝发生时间及发展过程的监测;邻近构筑物、道路、地下管网等设施变形监测;表层土体沉降、水平位移以及深层土体分层沉降和水平位监测;桩侧土压力监测;坑底隆起监测;土层孔隙水压力测试;地下水位测试。
2.2 基坑工程监测方法
2.2.1 围护与支撑结构监测
(1)围护结构项部水平位移监测。围护结构项部水平位移是围护结构变形最直观的体现,因此,围护结构顶部水平位移的监测也就成了深基坑监测工作中最重要的一个监测项目。
(2)围护结构倾斜监测。围护结构倾斜监测一般用测斜仪进行。根据围护结构受力特点及周围环境等因素,在关键地方钻孔布设测斜管,用高精度测斜仪进行监测,以根据围护结构在各开挖旌工阶段倾斜变化及时提供围护结构沿深度方向水平位移随时间变化曲线。目前工程中使用最多的是滑移式测斜仪。
(3)围护结构沉降监测。用精密水准仪按常规方法对围护结构关键部位进行沉降监测。
(4)围护结构应力监测。围护结构应力监测就是用钢筋应力计对桩身钢筋和锁口梁钢筋中较大应力断面处应力进行监测,以防围护结构的结构性破坏。
(5)支撑结构应力监测。支撑结构受力监测就是对锚杆和钢筋混凝土及钢筋内支撑受力状况进行监测。对锚杆旋工前应进行锚杆现场拉拔试验,以求得锚秆容许拉力。施工过程中用锚杆测力计监测锚杆实际受力情况,对钢管支撑可用压应力传感器或应变计等监测其受力状态变化。
2.2.2 周围环境监测
(l)邻近建筑物沉降和倾斜监测。观测点布置应根据建筑物体积、结构、工程地质条件、开挖方案等因素综合考虑,一般在建筑物角点、中点及周边设置,每栋建筑物观测点不少于8个,观测方法和观测精度与一般沉降观测相同。
(2)邻近建筑物裂缝监测。对观测裂缝统一编号,每条裂缝至少应布设两组(两侧各一个标志为一组)观测标志,裂缝宽度数据应精确至0.lmm,一组在裂缝最宽处,另一组在裂缝末端进行测绘。
(3)邻近道路、管线变形监测基坑开挖过程中,应同时对邻近道路、管线等设旋进行水平位移和沉降观测,基坑开挖时水平方向影响范围为1.5倍~2倍开挖深度,因此用于水平位移及沉降的控制点一般应设置在基坑边2.5倍~3.0倍开挖距离以外,水平位移控制点后方向可更远一些。
(4)地下水位测试。一般通过监测井监测,监测井布置较为随意,只要设置在止水帷幕以外即可。监测井不必埋设很深,井底标高一般在常年水位以下4m~5m即可。
(5)土体分层沉降和水土压力测试。应布置在围护结构体系中受力有代表性的位置,土体分层沉降和空隙水压力计测孔应紧邻围护桩墙埋设,土压力盒应尽量在施工围护桩墙时埋设在土体与围护桩墙的接触面上。
(6)土体回弹。深大基坑的回弹量对基坑本身和邻近建筑物都有较大影响,因此需做基坑回弹监测。在基坑中央和距坑底边缘1/4坑底宽度处及特征变形点必须设置监测点,方形、圆形基坑可按单向对称布点,矩形基坑可按纵横向布点,复合矩形基坑可多向布点,地质情况复杂时可适当增加点数。
(7)环境监测。环境监测的范围是基坑开挖3倍深度以内的区域,建筑物以沉降观测为主,测点应布设在墙角、桩身等部位,应能充分反映建筑物各部分的不均匀沉降。
2.3 基坑工程现场监测的要求
在基坑工程中,基坑工程的监测应与施工过程密切配合,根据施工速度,对监测到内力或变形的绝对值及变化速率进行认真分析,根据需要调整监测的时间间隔,必要时进行跟踪检测。应将检测结果及响应的施工工序、工况记录及时提供给施工管理人员。当监测数据超过警戒指标时,应不失时机地采取相应的技术措施。对重要而复杂地工程,应选择适当范围进行信息化施工。在施工监测中,运用反分析方法优化后续施工。在基坑工程中,确定各监测项目的警戒线和允许值是一项十分严肃的工作。它不仅是设计计算的重要基础,同时也是确定合理施工流程、保证周围环境安全的主要依据。监测项目的警戒值应根据基坑自身的特点、监测目的、周围环境的要求,结合当地工程经验并和有关部门协商综合确定。确定预警值的方法主要有3种。
(1)参照相关规范和规程的规定值。我国各地方标准中对基坑工程预警值的规定多
为最大允许位移或变形值。
(2)经验类比值。经验类比值是根据大量工程实践经验积累而确定的预警值,如基坑内降水或基坑开挖引起的基坑外水位下降不得超过1000mm,每天发展不得超过500mm;基坑开挖中引起的立柱桩隆起或沉降不得超过10mm,每天发展不得超过2mm。
(3)设计预估值。基坑和周围环境的位移与变形值是为了基坑和周围环境的安全需要在设计和监测时严格控制的,而围护结构和支撑的内力、锚杆拉力等,则是在满足以上基坑和周围环境的位移与变形控制值的前提下由设计计算得到的,因此,围护结构和支撑内力、锚杆拉力等应以设计预估值为确定预警值的依据,一般将预警值确定为设计允许最大值的80%。
3 监测信息反馈程序
完整的信息反馈系统对于保证监测数据的合理有效利用,为施工方案的调整提供可靠依据具有重要意义。首先,采集监测数据时,要保证数据的真实可靠;其次,对取得的数据,应用数理统计的方法和各种表格及曲线对数据进行整理和分析;最后,将整理后的数据汇总成周报表和月报表,定时交付监理方。另外,对于监测中发现的例外情况要特别对待处理,并及时向监理方汇报及提出建议。具体监测信息管理流程如下图1所示:
取得各种监测资料后,需及时进行处理,排除仪器、读数等操作过程中的失误,剔除和识别各种粗大、偶然和系统误差,避免漏测和错测,保证监测数据的可靠性和完整性,采用计算机进行监控量测资料的整理和初步定性分析工作。
(1)数据整理
把原始数据通过一定的方法,如按大小的排序用频率分布的形式把一组数据分布情况显示出来,进行数据的数字特征值计算,离群数据的取舍。
(2)插值法
在实测数据的基础上,采用函数近似的方法,求得符合测量规律而又未实测到的数据。
(3)采用统计分析方法对监测结果进行回归分析
寻找一种能够较好反映监测数据变化规律和趋势的函数关系式,对下一阶段的监测物理量进行预测,防忠于未然。如预测最终位移值,预测结构物的安全性,并据此确定工程技术措施等。因此,对每一测点的监测结果要根据管理基准和位移变化速率等综合判断结构和建筑物的安全状况,并编写周、月汇总报表,及时反馈指导旋工,调整施工参数,达到安全、快速、高效施工之目的。
4 深基坑监测的意义
深基坑的理论研究和工程实践告诉我们,理论、经验和监测相结合是指导深基坑工程的设计和施工的正确途径。对于复杂的大中型工程或环境要求严格的项目,往往难从以往的经验中得到借鉴,也难以从理论上找到定量分析和预测的方法,这就必定要依赖于施工过程中的现场监测。首先,靠现场监测提供动态信息反馈来指导施工全过程,并可通过监测数据来了解基坑的设计强度,为今后降低工程成本指标提供设计依据。第二,可及时了解施工环境一地下土层、地下管线、地下设施、地面建筑在施工过程中所受的影响及影响程度。第三,可及时发现和预报险情的发生及险情的发展程度,以便及时采取安全补救措施。
参考文献
[1]夏才初,李永盛,地下工程测试理论与监测技术.上海:同济大学出版社,1999
[2]李爱民,关于深基坑水平位移监测方案的探讨.测绘学院学报,2000,17(1):19~21
[3]熊智彪,王庙云,某复杂平面基坑支护结构水平位移监测及加固,岩土力学,2009,30(2):572-576
[4]张明富,王志良,赵良云,杭州地铁某车站基坑变形影响因素分析,都市快轨交通,2009,22(2):59-61
[5]李章林,徐辰春,朱学银.超宽深基坑开挖与支撑轴力和围护结构变形现场实测研究,道桥工程.2009,2:15—17
[6]陈军.深基坑支护工程的设计、施工与监测,湖南大学学报,2002,29(3):117~121
【关键词】深基坑工程;现场监测
近年来,随着我国经济水平和城市建设的迅速发展,开发和利用地下空间日显重要。国内兴建了许多大型地下设施,如城市地铁、地下商场、污水处理工程、过江隧道工程等。伴随着深基坑工程规模和深度的不断加大,开挖深度超过10m的基坑已属常见,地铁车站的开挖深度达20m。大量深基坑工程的出现迫切需要监测技术理论的迸一步提高,深基坑工程正确、科学的监测设计,配合切实有效的信息化施工管理,对确保基坑支护结构和环境安全及加快工程建设进度至关重要。
1 基坑工程现场监测的主要目的
由于基坑的复杂性,在基坑施工过程中,只有对其围护结构、周围土体和相邻建筑物进行综合、系统的监测,才能对工程情况有全面地了解,确保工程顺利进行。旋工监测的任务是配合施工过程动态测量围护结构变形及受力的变化情况,把测量结果及时反馈于施工过程,指导基坑开挖和支护结构施工,保证基坑支护结构和相邻建筑物的安全,总结施工经验,为完善设计提供依据。现场监测是确保实际施工安全可靠进行的必要和有效手段,对于验证原设计方案和局部进行调整施工参数、积累数据、总结经验、改进和提高设计水平具有相当的实际指导意义。
2 基坑工程现场监测技术
2.1 国内的基坑工程现场监测内容
基坑开挖期间施工现场监测的内容分为两大部分,即支护结构本身(围护结构)的稳定性和相邻环境(周围环境)的变化。
(1)围护结构的主要监测内容:围护结构完整性及强度监测;围护结构项部水平位移监测;围护结构倾斜监测;围护结构沉降监测;围护结构应力监测。
(2)周围环境监测
周围环境的监测主要包括:邻近建筑物沉降、倾斜和裂缝发生时间及发展过程的监测;邻近构筑物、道路、地下管网等设施变形监测;表层土体沉降、水平位移以及深层土体分层沉降和水平位监测;桩侧土压力监测;坑底隆起监测;土层孔隙水压力测试;地下水位测试。
2.2 基坑工程监测方法
2.2.1 围护与支撑结构监测
(1)围护结构项部水平位移监测。围护结构项部水平位移是围护结构变形最直观的体现,因此,围护结构顶部水平位移的监测也就成了深基坑监测工作中最重要的一个监测项目。
(2)围护结构倾斜监测。围护结构倾斜监测一般用测斜仪进行。根据围护结构受力特点及周围环境等因素,在关键地方钻孔布设测斜管,用高精度测斜仪进行监测,以根据围护结构在各开挖旌工阶段倾斜变化及时提供围护结构沿深度方向水平位移随时间变化曲线。目前工程中使用最多的是滑移式测斜仪。
(3)围护结构沉降监测。用精密水准仪按常规方法对围护结构关键部位进行沉降监测。
(4)围护结构应力监测。围护结构应力监测就是用钢筋应力计对桩身钢筋和锁口梁钢筋中较大应力断面处应力进行监测,以防围护结构的结构性破坏。
(5)支撑结构应力监测。支撑结构受力监测就是对锚杆和钢筋混凝土及钢筋内支撑受力状况进行监测。对锚杆旋工前应进行锚杆现场拉拔试验,以求得锚秆容许拉力。施工过程中用锚杆测力计监测锚杆实际受力情况,对钢管支撑可用压应力传感器或应变计等监测其受力状态变化。
2.2.2 周围环境监测
(l)邻近建筑物沉降和倾斜监测。观测点布置应根据建筑物体积、结构、工程地质条件、开挖方案等因素综合考虑,一般在建筑物角点、中点及周边设置,每栋建筑物观测点不少于8个,观测方法和观测精度与一般沉降观测相同。
(2)邻近建筑物裂缝监测。对观测裂缝统一编号,每条裂缝至少应布设两组(两侧各一个标志为一组)观测标志,裂缝宽度数据应精确至0.lmm,一组在裂缝最宽处,另一组在裂缝末端进行测绘。
(3)邻近道路、管线变形监测基坑开挖过程中,应同时对邻近道路、管线等设旋进行水平位移和沉降观测,基坑开挖时水平方向影响范围为1.5倍~2倍开挖深度,因此用于水平位移及沉降的控制点一般应设置在基坑边2.5倍~3.0倍开挖距离以外,水平位移控制点后方向可更远一些。
(4)地下水位测试。一般通过监测井监测,监测井布置较为随意,只要设置在止水帷幕以外即可。监测井不必埋设很深,井底标高一般在常年水位以下4m~5m即可。
(5)土体分层沉降和水土压力测试。应布置在围护结构体系中受力有代表性的位置,土体分层沉降和空隙水压力计测孔应紧邻围护桩墙埋设,土压力盒应尽量在施工围护桩墙时埋设在土体与围护桩墙的接触面上。
(6)土体回弹。深大基坑的回弹量对基坑本身和邻近建筑物都有较大影响,因此需做基坑回弹监测。在基坑中央和距坑底边缘1/4坑底宽度处及特征变形点必须设置监测点,方形、圆形基坑可按单向对称布点,矩形基坑可按纵横向布点,复合矩形基坑可多向布点,地质情况复杂时可适当增加点数。
(7)环境监测。环境监测的范围是基坑开挖3倍深度以内的区域,建筑物以沉降观测为主,测点应布设在墙角、桩身等部位,应能充分反映建筑物各部分的不均匀沉降。
2.3 基坑工程现场监测的要求
在基坑工程中,基坑工程的监测应与施工过程密切配合,根据施工速度,对监测到内力或变形的绝对值及变化速率进行认真分析,根据需要调整监测的时间间隔,必要时进行跟踪检测。应将检测结果及响应的施工工序、工况记录及时提供给施工管理人员。当监测数据超过警戒指标时,应不失时机地采取相应的技术措施。对重要而复杂地工程,应选择适当范围进行信息化施工。在施工监测中,运用反分析方法优化后续施工。在基坑工程中,确定各监测项目的警戒线和允许值是一项十分严肃的工作。它不仅是设计计算的重要基础,同时也是确定合理施工流程、保证周围环境安全的主要依据。监测项目的警戒值应根据基坑自身的特点、监测目的、周围环境的要求,结合当地工程经验并和有关部门协商综合确定。确定预警值的方法主要有3种。
(1)参照相关规范和规程的规定值。我国各地方标准中对基坑工程预警值的规定多
为最大允许位移或变形值。
(2)经验类比值。经验类比值是根据大量工程实践经验积累而确定的预警值,如基坑内降水或基坑开挖引起的基坑外水位下降不得超过1000mm,每天发展不得超过500mm;基坑开挖中引起的立柱桩隆起或沉降不得超过10mm,每天发展不得超过2mm。
(3)设计预估值。基坑和周围环境的位移与变形值是为了基坑和周围环境的安全需要在设计和监测时严格控制的,而围护结构和支撑的内力、锚杆拉力等,则是在满足以上基坑和周围环境的位移与变形控制值的前提下由设计计算得到的,因此,围护结构和支撑内力、锚杆拉力等应以设计预估值为确定预警值的依据,一般将预警值确定为设计允许最大值的80%。
3 监测信息反馈程序
完整的信息反馈系统对于保证监测数据的合理有效利用,为施工方案的调整提供可靠依据具有重要意义。首先,采集监测数据时,要保证数据的真实可靠;其次,对取得的数据,应用数理统计的方法和各种表格及曲线对数据进行整理和分析;最后,将整理后的数据汇总成周报表和月报表,定时交付监理方。另外,对于监测中发现的例外情况要特别对待处理,并及时向监理方汇报及提出建议。具体监测信息管理流程如下图1所示:
取得各种监测资料后,需及时进行处理,排除仪器、读数等操作过程中的失误,剔除和识别各种粗大、偶然和系统误差,避免漏测和错测,保证监测数据的可靠性和完整性,采用计算机进行监控量测资料的整理和初步定性分析工作。
(1)数据整理
把原始数据通过一定的方法,如按大小的排序用频率分布的形式把一组数据分布情况显示出来,进行数据的数字特征值计算,离群数据的取舍。
(2)插值法
在实测数据的基础上,采用函数近似的方法,求得符合测量规律而又未实测到的数据。
(3)采用统计分析方法对监测结果进行回归分析
寻找一种能够较好反映监测数据变化规律和趋势的函数关系式,对下一阶段的监测物理量进行预测,防忠于未然。如预测最终位移值,预测结构物的安全性,并据此确定工程技术措施等。因此,对每一测点的监测结果要根据管理基准和位移变化速率等综合判断结构和建筑物的安全状况,并编写周、月汇总报表,及时反馈指导旋工,调整施工参数,达到安全、快速、高效施工之目的。
4 深基坑监测的意义
深基坑的理论研究和工程实践告诉我们,理论、经验和监测相结合是指导深基坑工程的设计和施工的正确途径。对于复杂的大中型工程或环境要求严格的项目,往往难从以往的经验中得到借鉴,也难以从理论上找到定量分析和预测的方法,这就必定要依赖于施工过程中的现场监测。首先,靠现场监测提供动态信息反馈来指导施工全过程,并可通过监测数据来了解基坑的设计强度,为今后降低工程成本指标提供设计依据。第二,可及时了解施工环境一地下土层、地下管线、地下设施、地面建筑在施工过程中所受的影响及影响程度。第三,可及时发现和预报险情的发生及险情的发展程度,以便及时采取安全补救措施。
参考文献
[1]夏才初,李永盛,地下工程测试理论与监测技术.上海:同济大学出版社,1999
[2]李爱民,关于深基坑水平位移监测方案的探讨.测绘学院学报,2000,17(1):19~21
[3]熊智彪,王庙云,某复杂平面基坑支护结构水平位移监测及加固,岩土力学,2009,30(2):572-576
[4]张明富,王志良,赵良云,杭州地铁某车站基坑变形影响因素分析,都市快轨交通,2009,22(2):59-61
[5]李章林,徐辰春,朱学银.超宽深基坑开挖与支撑轴力和围护结构变形现场实测研究,道桥工程.2009,2:15—17
[6]陈军.深基坑支护工程的设计、施工与监测,湖南大学学报,2002,29(3):117~121