Big Learning with Bayesian methods

来源 :National Science Review | 被引量 : 0次 | 上传用户:jianjian19527
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
The explosive growth in data volume and the availability of cheap computing resources have sparked increasing interest in Big learning, an emerging subfield that studies scalable machine learning algorithms,systems and applications with Big Data. Bayesian methods represent one important class of statistical methods for machine learning, with substantial recent developments on adaptive, flexible and scalable Bayesian learning. This article provides a survey of the recent advances in Big learning with Bayesian methods, termed Big Bayesian Learning, including non-parametric Bayesian methods for adaptively inferring model complexity, regularized Bayesian inference for improving the flexibility via posterior regularization, and scalable algorithms and systems based on stochastic subsampling and distributed computing for dealing with large-scale applications. We also provide various new perspectives on the large-scale Bayesian modeling and inference. The explosive growth in data volume and the availability of cheap computing resources have sparked increasing interest in Big learning, an emerging subfield that studies scalable machine learning algorithms, systems and applications with Big Data. Bayesian methods represent one important class of statistical methods for machine learning , with substantial recent developments on adaptive, flexible and scalable Bayesian learning. This article provides a survey of the recent advances in Big learning with Bayesian methods, termed Big Bayesian Learning, including non-parametric Bayesian methods for adaptively inferring model complexity, regularized Bayesian inference for improving the flexibility via posterior regularization, and scalable algorithms and systems based on stochastic subsampling and distributed computing for dealing with large-scale applications. We also provide various new perspectives on the large-scale Bayesian modeling and inference.
其他文献
请下载后查看,本文暂不支持在线获取查看简介。 Please download to view, this article does not support online access to view profile.
期刊
作为当代美国作家托尼·莫里森的杰作之一,《最蓝的眼睛》描绘了布里德洛夫家庭的悲惨生活。主人公佩科拉生活在一个冷漠无情,缺乏关爱的家庭。同时她也在白人主导的社会和黑
请下载后查看,本文暂不支持在线获取查看简介。 Please download to view, this article does not support online access to view profile.
马丁·刘易斯·艾米斯(1949—)同朱利安·巴恩斯、伊恩·麦克维恩并称为英国“文坛三巨头”,是一位颇具影响力的英国当代作家。《时间箭》是他第一部获得布克奖提名的小说,该
弗吉尼亚·伍尔夫(1882-1941)是英国意识流文学的代表作家之一。《奥兰多:一部传记》这篇小说讲述了美少年奥兰多历时四百年的人生经历。他先后遭遇爱情的背叛和文学野心的挫
请下载后查看,本文暂不支持在线获取查看简介。 Please download to view, this article does not support online access to view profile.
期刊
今年60岁的林秀贞,是河北省衡水市枣强县王常乡南臣赞村的一名普通共产党员。她的高尚品格和爱心,感动和温暖看周围的人,乡亲们敬佩地称赞她“可是一个大好人哪!”30年来,林
[目的]了解2007年河南省法定传染病发生水平、构成及流行特征。[方法]使用中国疾病预防控制中心所开发的“疾病监测信息报告管理系统”对2007年河南省法定传染病发病与死亡情
Sea ice type is an important factor for accurately calculating sea ice parameters such as sea ice concentration, sea ice area and sea ice thickness using satellite remote sensing data. In this study,
路易斯·厄德里齐(Louise Erdrich,1954-)是第二波“印第安文学复兴”中的代表作家,也是迄今为止最具影响力的本土女作家之一。截至目前,她一共出版了十五部小说。其中第十四