论文部分内容阅读
在很多实际应用中很难获得适当的图像训练集,但是单幅图像放大却是一个病态问题。利用图像局部结构的自相似性和可传递性,结合非下采样Contourlet变换(NSCT)的优点,提出一种基于自类推与NSCT的单幅图像超分辨率重建(SRR)方法。采用NSCT对源图像和退化图像进行多尺度、多方向分解,得到用于学习的各带通方向子带对,利用图像自类推技术生成高分辨率的各带通方向子带,与立方插值放大后的源图像进行NSCT重构得到超分辨率重建图像。实验结果表明,该方法可以独立进行,摆脱一般方法对训练结合的依赖,能产生更