论文部分内容阅读
针对KNN算法在处理大数据时的两个不足对其进行了研究,提出多层差分KNN算法。算法对已知样本根据类域进行分层,既避免了传统改进算法中剪辑样本带来的判别误差,又大大降低了无效的计算量;同时在最后一层采用差分的方法进行决策,而不是直接根据最近邻进行分类,大大提高了分类的准确性。实验结果表明,该算法在对样本容量大、涉及邻域多的大数据样本进行分类时能取得较好的分类效果。