论文部分内容阅读
网络入侵数据常常体现为高维、线性不可分性。RBF神经网络没有降维处理的功能,所以直接对原始数据进行检测速度相当慢,影响网络入侵检测的实时性。如果采用传统的选择性删除法进行降维处理,会造成信息的丢失,影响网络入侵的检测精度。为了提高网络入侵检测率和检测速度,提出一种主成分分析(PCA)和RBF神经网络相结合的网络入侵检测方法(PCA-RBF)。PCA-RBF在通过PCA对网络入侵原始数据进行维数和消除冗余信息处理的基础上,构建RBF神经网络入侵检测模型。仿真结果表明,相对于传统的RBF方法,PCA-R