论文部分内容阅读
简要介绍了基于统计学习理论的支持向量机回归(SVR)原理,针对边坡稳定性影响因素的复杂性,结合实例运用SVR技术构建了铀矿边坡稳定性的支持向量回归预报模型,并利用网格搜索与留一交叉验证方法(LOOCV)优化模型参数。研究表明,在小样本条件下, SVR预报模型对训练样本的计算值与实测值平均相对误差(MRE)为0.045967%,相对均方误差(MSRE)为0.046371%,拟合值(VOF)为1.999995765,相关系数(R)为0.9984,均比人工神经网络方法的相应指标值要小,说明支持向量回归方法是一种