论文部分内容阅读
基于具有核函数不用满足Mercer条件、相关向量自动确定及核函数少特点的稀疏贝叶斯的相关向量机核学习方法,提出了平滑先验条件约束的相关向量机的学习方法,采用稀疏贝叶斯模型的最大边缘似然算法加快了求解相关向量机的向量,并采取交叉验证法确定其核参数提高了相关向量机辨识的泛化性。该方法避免了支持向量机的非线性系统辨识的模型结构难于确定的问题,与支持向量机辨识方法相比较,辨识的模型结构更简洁。仿真表明,该方法应用于非线性动态系统的辨识,具有良好的效果。