QUALITATIVE ANALYSIS OF SPHERICAL CAVITY NUCLEATION AND GROWTH FOR INCOMPRESSIBLE GENERALIZED VALANI

来源 :Acta Mechanica Solida Sinica | 被引量 : 0次 | 上传用户:TIANYAGUKEXING
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
A cavitated bifurcation problem is examined for a sphere composed of a class of generalized Valanis-Landel materials subjected to a uniform radial tensile dead-load. A cavitated bifurcation equation is obtained. An explicit formula for the critical value associated with the vari- ation of the imperfection parameters is presented. The distinguishing between the left-bifurcation and right-bifurcation of the nontrivial solution of the cavitated bifurcation equation at the critical point is made. It is proved that there exists a secondary turning bifurcation point on the nontrivial solution branch, which bifurcates locally to the left. It is shown that the dimensionless cavitated bifurcation equation is equivalent to normal forms with single-sided constraint conditions at the critical point by using the singularity theory. The stability and catastrophe of the solutions of the cavitated bifurcation equation are discussed. A cavitated bifurcation problem is examined for a sphere composed of a class of generalized Valanis-Landel materials subjected to a uniform radial tensile dead-load. An explicit formula for the critical value associated with the vari ation of the imperfection parameters the presented. The distinguishing between the left-bifurcation and right-bifurcation of the nontrivial solution of the cavitated bifurcation equation at the critical point is made. It is verified that there exists a secondary turning bifurcation point on the nontrivial solution branch, which bifurcates locally to the left. It is shown that the dimensionless cavitated bifurcation equation is equivalent to normal forms with single-sided constraint conditions at the critical point by using the singularity theory. The stability and catastrophe of the solutions of the cavitated bifurcation equation are discussed.
其他文献
引言近年来,“中等收入陷阱”和“拉美化”成为专家学者频密关注的名词。什么是“中等收入陷阱”?什么是拉美化?二者之间有何关联?“中等收入陷阱”和拉美化发生的条件是什么
《无止之境:中国平安成长之路》作者:秦朔 陈天翔出版日期:2020年5月出版社:中信出版集团推荐理由:  2020年5月27日,中国平安32岁司庆日。这个从蛇口破土而出的中国第一家股份制保险公司,32年来,用深圳速度不断超越自我、超越对手、超越市场,发展为最年轻的世界级公司之一。  5月27日,平安内部司庆现场,人文财经观察家秦朔作为特邀嘉宾发表了一段主题演讲,有关企业的本质、增长和研究平安的启示
期刊
受新冠肺炎疫情影响,今年医药股的表现格外受到市场关注.rn然而,也并非所有医药股都是业绩与股价双升,比如康美药业(ST康美,600518.SH)因财务造假近300亿被证监会处罚,坑惨了
期刊
“听说污水处理厂要建在这里,我懵了.”rn3月18日,初次与《中国经济周刊》记者见面的王杰,上来就蹦出了这句话.rn王杰是位于海口市琼山区的3A级旅游景区——海南花卉大世界的
期刊
Based on the Schapery three-dimensional viscoelastic constitutive relationship with growing damage, a damage model with transverse matrix cracks for the uni
对陕西岐山县礼村的周原黄土进行了磁化率和穆斯堡尔谱的测试,样品选自礼村黄土剖面中的马兰黄土、褐红色顶层埋藏土、褐色顶层埋藏土和新近黄土各个层位,它们是在不同的气候条
This paper analyzes the characteristics of utilizing shape memory e?ect (SME) of shape memory alloy (SMA) in improving the low velocity impact resistance pe
基于能量最低原理,本文建立了适用于金属材料塑性变形过程中动态再结晶组织模拟的元胞自动机模型。模拟结果表明:晶界和第二相粒子对位错运动的阻碍作用有利于动态再结晶形核
从自由电子在高频电场中的运动方程出发,研究了高频离子源的工作原理。由边界条件和电离条件推导出截止条件和最低点火电压的关系式。在此基础上编出了适于在各种气压下计算各
《国家宝藏》创作团队、演员合照《国家宝藏》栏目组供图  熟悉的配方、熟悉的舞臺、熟悉的灯光、熟悉的“前世传奇”、熟悉的001号讲解员张国立、不变的“C位”故宫博物院……《国家宝藏》第二季再次掀起全民热议。  不同的是,《国家宝藏》第二季带来了全新的八大博物馆(院),和27组顶级国宝重器及国宝守护人。  2018年12月9日,《国家宝藏》第二季由中央广播电视总台、故宫博物院,联手河北博物院、山西博物
期刊