论文部分内容阅读
【摘 要】文章提出了一种新的大学生身体素质评估方法。采用遗传算法和误差反向传播算法(BP)相结合的混合算法来训练前馈神经网络,即先用遗传算法进行全局训练,再用BP算法进行局部精确训练,既克服了传统BP网络训练时间长,易陷入局部极值的缺点,又提高了全局收敛的效率。结果表明,该算法收敛速度快,预测精度高,为大学生身体素质评估提供了一种新思路。
【关键词】大学生身体素质评估 遗传算法 BP神经网络 MATLAB计算程序
在校大学生是国家重要的人才后备力量,大学生的身体素质培养和锻炼是学校体育教学中关注的重点。对大学生身体素质进行科学、切实的评价可制订更为有效的培养方案,帮助大学生提高其身体素质。身体素质评价就是将大学生的身体形态、生理机能及运动能力等方面的数据综合起来进行评价[1]。从以往的研究成果看,对大学生身体素质评价集中于采用概率统计、多元回归分析和神经网络[2]的方法。然而,概率统计仅得到整体评价结果,多元回归分析预测精度较低,且两者受样本空间影响较大。为此,本文利用遗传算法来训练初始网络模型,再用BP算法来进行精确求解,是对神经网络评估大学生身体素质的进一步优化应用。
基于遗传算法的BP神经网络理论
通过把神经网络和遗传算法合理、科学的结合,既能够利用神经网络较强的学习能力,又发挥了遗传算法全局寻优的搜索功能。首先利用遗传算法得到权值的较优初始取值,训练网络避免了局部极小,利用BP神经网络训练次数和最终权值也相对稳定,训练速度明显加快,从而既节约了时间,又提高了预测结果的准确性。
1.基于遗传算法的BP神经网络结构
BP网络的学习规则采用最速下降法,利用遗传算法根据训练目标函数对网络权值进行迭代,找到最佳初始网络权值。通过反向传播来不断调整网络权值,使网络误差平方和最小,该系统的网络结构,如图1所示。先对大学生身体素质的评估指标进行分类,抽取大学生身体素质的特征指标,并作为输入信息送入由输入层、中间层和输出层组成的三层网络模型进行评估。经过测试的网络,成为稳定的模式评估器,即可输出评估结果[3,4]。
该模型的输入层节点数为n,即大学生身体素质评价指标数,中间层节点数为 ,输出层节点数为1,即身体素质评估结果值,ωij和ωj为BP神经网络权值,初始化隐含层阈值为ɑ,输出层阈值为b,由此可给定学习速率和神经元激励函数。从图1可发现,BP神经网络可以看成一个非线性函数,网络输入值和输出值分别为该函数的自变量和因变量。当输入层节点数为n,输出层节点数为1时,BP神经网络就表达了从n个自变量到1个因变量的函数映射关系。
2.基于遗传算法的BP神经网络算法
遗传算法优化BP神经网络的核心是用遗传算法来优化BP神经网络的初始权值和阈值,使优化后的BP神经网络能够更好地预测函数输出,计算流程如图2所示。
1.背景资料
根据本校某班2011年大学生身体素质测评成绩,从中选取30名学生的测试结果作为神经网络的训练样本和校验样本。结合遗传算法和BP神经网络算法,在大型数学计算软件MATLAB中编程实现基于遗传算法的BP神经网络大学生身体素质评估[4]。
2.计算结果与分析
遗传算法优化过程中最优个体的适应度变化(如图3)。把最优初始权值、阈值赋给神经网络,用训练数据训练100次后,得到基于遗传算法的BP神经网络预测值。为了对比分析,也进行了BP神经网络预测分析(如图4)。
从图4可看出,采用BP神经网络及遗传算法优化的BP神经网络两种算法得到的预测结果,与专家判断(实际值)基本一致。但基于遗传算法的BP神经网络较BP神经网络预测精度高。特别在输入节点,即评价大学生身体素质的指标较多时,基于遗传算法的BP神经网络预测效果要好一些。
结 论
1.本文提出了基于遗传算法的BP神经网络大学生身体素质评价算法,并建立了相应的网络模型。
2.基于遗传算法的BP神经网络算法不但具有神经网络的函数逼近能力,而且应用遗传算法优化BP神经网络的权值、阈值,可使优化后的神经网络避免训练时间长、易陷入局部极值的缺点。
3.结合实例,将基于遗传算法的BP神经网络大学生身体素质评价算法,应用于本校学生身体素质评估。结果表明,该算法较BP神经网络预测精度及效率高,可作为今后大学生身体素质评价的一种新方法。
参考文献:
[1]范正森,张明如,周瑞琪.大学生身体素质综合评价数学模型[J].武汉工业大学学报,2001,4:92-94.
[2]陈海英,郭巧.短跑运动能力的神经网络评价方法[J].北京理工大学学报,2003,1:54-57.
[3]陈刚,何政伟,杨斌,杨洋.遗传BP神经网络在泥石流危险性评价中的应用[J].计算机工程与应用,2010,46(3).
[4]周开利,康耀红.神经网络模型及其MATLAB仿真程序设计[M].北京:清华大学出版社,2005.
作者单位:长安大学体育部 陕西西安
【关键词】大学生身体素质评估 遗传算法 BP神经网络 MATLAB计算程序
在校大学生是国家重要的人才后备力量,大学生的身体素质培养和锻炼是学校体育教学中关注的重点。对大学生身体素质进行科学、切实的评价可制订更为有效的培养方案,帮助大学生提高其身体素质。身体素质评价就是将大学生的身体形态、生理机能及运动能力等方面的数据综合起来进行评价[1]。从以往的研究成果看,对大学生身体素质评价集中于采用概率统计、多元回归分析和神经网络[2]的方法。然而,概率统计仅得到整体评价结果,多元回归分析预测精度较低,且两者受样本空间影响较大。为此,本文利用遗传算法来训练初始网络模型,再用BP算法来进行精确求解,是对神经网络评估大学生身体素质的进一步优化应用。
基于遗传算法的BP神经网络理论
通过把神经网络和遗传算法合理、科学的结合,既能够利用神经网络较强的学习能力,又发挥了遗传算法全局寻优的搜索功能。首先利用遗传算法得到权值的较优初始取值,训练网络避免了局部极小,利用BP神经网络训练次数和最终权值也相对稳定,训练速度明显加快,从而既节约了时间,又提高了预测结果的准确性。
1.基于遗传算法的BP神经网络结构
BP网络的学习规则采用最速下降法,利用遗传算法根据训练目标函数对网络权值进行迭代,找到最佳初始网络权值。通过反向传播来不断调整网络权值,使网络误差平方和最小,该系统的网络结构,如图1所示。先对大学生身体素质的评估指标进行分类,抽取大学生身体素质的特征指标,并作为输入信息送入由输入层、中间层和输出层组成的三层网络模型进行评估。经过测试的网络,成为稳定的模式评估器,即可输出评估结果[3,4]。
该模型的输入层节点数为n,即大学生身体素质评价指标数,中间层节点数为 ,输出层节点数为1,即身体素质评估结果值,ωij和ωj为BP神经网络权值,初始化隐含层阈值为ɑ,输出层阈值为b,由此可给定学习速率和神经元激励函数。从图1可发现,BP神经网络可以看成一个非线性函数,网络输入值和输出值分别为该函数的自变量和因变量。当输入层节点数为n,输出层节点数为1时,BP神经网络就表达了从n个自变量到1个因变量的函数映射关系。
2.基于遗传算法的BP神经网络算法
遗传算法优化BP神经网络的核心是用遗传算法来优化BP神经网络的初始权值和阈值,使优化后的BP神经网络能够更好地预测函数输出,计算流程如图2所示。
1.背景资料
根据本校某班2011年大学生身体素质测评成绩,从中选取30名学生的测试结果作为神经网络的训练样本和校验样本。结合遗传算法和BP神经网络算法,在大型数学计算软件MATLAB中编程实现基于遗传算法的BP神经网络大学生身体素质评估[4]。
2.计算结果与分析
遗传算法优化过程中最优个体的适应度变化(如图3)。把最优初始权值、阈值赋给神经网络,用训练数据训练100次后,得到基于遗传算法的BP神经网络预测值。为了对比分析,也进行了BP神经网络预测分析(如图4)。
从图4可看出,采用BP神经网络及遗传算法优化的BP神经网络两种算法得到的预测结果,与专家判断(实际值)基本一致。但基于遗传算法的BP神经网络较BP神经网络预测精度高。特别在输入节点,即评价大学生身体素质的指标较多时,基于遗传算法的BP神经网络预测效果要好一些。
结 论
1.本文提出了基于遗传算法的BP神经网络大学生身体素质评价算法,并建立了相应的网络模型。
2.基于遗传算法的BP神经网络算法不但具有神经网络的函数逼近能力,而且应用遗传算法优化BP神经网络的权值、阈值,可使优化后的神经网络避免训练时间长、易陷入局部极值的缺点。
3.结合实例,将基于遗传算法的BP神经网络大学生身体素质评价算法,应用于本校学生身体素质评估。结果表明,该算法较BP神经网络预测精度及效率高,可作为今后大学生身体素质评价的一种新方法。
参考文献:
[1]范正森,张明如,周瑞琪.大学生身体素质综合评价数学模型[J].武汉工业大学学报,2001,4:92-94.
[2]陈海英,郭巧.短跑运动能力的神经网络评价方法[J].北京理工大学学报,2003,1:54-57.
[3]陈刚,何政伟,杨斌,杨洋.遗传BP神经网络在泥石流危险性评价中的应用[J].计算机工程与应用,2010,46(3).
[4]周开利,康耀红.神经网络模型及其MATLAB仿真程序设计[M].北京:清华大学出版社,2005.
作者单位:长安大学体育部 陕西西安