论文部分内容阅读
针对硬件实现RBF神经网络提出了一种亲属优先遗传算法,并用于RBF神经网络对中心值参数c进行优化学习.通过Matlab仿真对非线性函数y=sinc(x)进行逼近,并与BP算法、K-means聚类算法以及标准遗传算法进行比较,实验结果证实了所提出的算法的有效性和适用性,既避免了RBF神经网络的学习陷入局部极小,同时也提高了学习效率,为硬件实现RBF神经网络的片上学习提供了基础.