论文部分内容阅读
【目的】深度学习在图像分类方面效果显著,但对机器的硬件配置要求高,将深度学习的技术应用于作物分类的同时,降低客户端的IT成本,开发基于深度学习服务的遥感影像农作物分类系统。【方法】系统采用C/S架构,服务器端部署Caffe的深度学习框架,通过PaaS提供计算服务,统一处理客户端模型训练、影像分类等任务;客户端提供用户界面,负责数据输入、结果解析和可视化操作;客户端和服务器之间通过异步RPC实现网络通信,利用FTP进行数据的上传和下载;考虑到农作物分类在实际应用中的时效性,系统还提供了一个简化的Ale