Identification of two glycerophosphodiester phosphodiesterase genes in maize leaf phosphorus remobil

来源 :作物学报(英文版) | 被引量 : 0次 | 上传用户:passionzy
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
Phosphate deficiency is one of the leading causes of crop productivity loss. Phospholipid degradation liberates phosphate to cope with phosphate deficiency. Glycerophosphodiester phosphodiesterases (GPX-PDEs) hydrolyse the intermediate products of phospholipid catabolism glycerophosphodiesters into glycerol-3-phosphate, a precursor of phosphate. However, the function of GPX-PDEs in phosphate remobilization in maize remains unclear. In the present study, we characterized two phosphate deficiency-inducible GPX-PDE genes, ZmGPX-PDE1 and ZmGPX-PDE5, in maize leaves. ZmGPX-PDE1 and ZmGPX-PDE5 were transcriptionally regulated by ZmPHR1, a well-described phosphate starvation-responsive transcription factor of the MYB family. Complementation of the yeast GPX-PDE mutant gde1Δindicated that ZmGPX-PDE1 and ZmGPX-PDE5 functioned as GPX-PDEs, suggesting their roles in phosphate recycling from glycerophosphodiesters. In vitro enzyme assays showed that ZmGPX-PDE1 and ZmGPX-PDE5 catalysed glycerophosphodiester degradation with different substrate preferences for glycerophosphoinositol and glycerophosphocholine, respectively. ZmGPX-PDE1 was upregulated during leaf senescence, and more remarkably, loss of ZmGPX-PDE1 in maize compromised the remobilization of phosphorus from senescing leaves to young leaves, resulting in a stay-green phenotype under phosphate starvation. These results suggest that ZmGPX-PDE1 catalyses the degradation of glycerophosphodiesters in maize, promoting phosphate recycling from senescing leaves to new leaves. This mechanism is crucial for improving phosphorus utilization efficiency in crops.
其他文献
Drought stress is a limiting factor for wheat production and food security. Drought priming has been shown to increase drought tolerance in wheat. However, the