论文部分内容阅读
针对一类含非参数不确定性的非线性系统,提出一种鲁棒迭代学习控制算法,该算法放宽了常规迭代学习控制方法的初始定位条件,迭代初值可任意取值.基于类Lyapunov方法设计误差轨迹跟踪控制器,通过鲁棒限幅学习机制对不确定性进行估计和补偿,能够在整个作业区间上实现误差对给定期望误差轨迹的精确跟踪,期望误差轨迹根据迭代起始时刻的误差值设置.利用期望误差轨迹的衰减性状,可使系统误差在预设的时间点后收敛于原点的邻域内,邻域半径的大小可根据需要任意设置.理论分析和仿真结果表明了控制方法的有效性.