Benefits of Conservation Agriculture on Soil and Water Conservation and Its Progress in China

来源 :Agricultural Sciences in China | 被引量 : 0次 | 上传用户:liongliong419
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
Conservation agriculture has been practised for three decades and has been spread widely. There are many nomenclatures surrounding conservation agriculture and differ to each other lightly. Conservation agriculture (CA) is a system approach to soil and water conservation, high crop productivity and profitability, in one word, it is a system approach to sustainable agriculture. Yet, because conservation agriculture is a knowledge-intensive and a complex system to learn and implement, and also because of traditions of intensive cultivation, adoption rates have been low, since to date, only about seven percent of the world’s arable and permanent cropland area is farmed under conservation agriculture. The practice and wider extention of conservation agriculture thus requires a deeper understanding of its ecological underpinnings in order to manage its various elements for sustainable intensification, where the aim is to conserve soil and water and improve sustainability over the long term. This paper described terms related to conservation agriculture, presented the effects of conservation agriculture on soil and water conservation, crop productivity, progress and adoption of CA worldwide, emphasized obstacles and possible ways to increase CA adoption to accelerate sustainable development of China agriculture. Conservation agriculture has been practically for three decades and has been spread widely. There are many nomenclatures surrounding conserving agriculture and differ to each other lightly. Conservation agriculture (CA) is a system approach to soil and water conservation, high crop productivity and profitability, in Yet word because it is a system approach to sustainable agriculture. Yet, because conservation agriculture is a knowledge-intensive and a complex system to learn and implement, and also because of traditions of intensive cultivation, adoption rates have been low, since to date, only about seven percent of the world’s arable and permanent cropland area is farmed under conservation agriculture. The practice and wider extention of conservation agriculture thus require a deeper understanding of its ecological underpinnings in order to manage its various elements for sustainable intensification, where the aim is to conserve soil and water and improve sustainability over the long term. The paper said terms related to conservation agriculture, presented the effects of conservation agriculture on soil and water conservation, crop productivity, progress and adoption of CA worldwide, emphasized obstacles and possible ways to increase CA adoption to accelerate sustainable development of China agriculture.
其他文献
纳米纤维与相应的体材料相比表现出一些特殊的性能,如非常大的比表面积和表面灵活性以及优越的力学性能等,因而引起了人们的广泛关注。稀土氟化物材料是非常重要的发光基质材
生命体的新陈代谢离不开各种蛋白质的协调作用,而氨基酸作为合成蛋白质的原料,通过自身及其代谢产物对生物体的蛋白质代谢、脂代谢、糖代谢等营养物质的代谢起到调节作用,具
杂环化合物的研究工作近年来得到迅速发展,其中杂环配体以及相应的金属配合物在仿生学、工业催化、医药等方面应用的研究发展更是得到人们广泛关注。目前主要研究方向建立在
近年来,功能性纳米杂化材料的研究成为人们关注的热点之一。将有机功能配体的可设计性和纳米微粒的量子效应等结合起来,更易于实现纳米材料的控制合成、表面修饰、功能复合和