论文部分内容阅读
针对自然背景下牧草难识别的问题,提出一种基于双池化与多尺度核特征加权的卷积神经网络牧草识别方法。双池化特征加权结构通过将卷积层输出的特征图分别进行最大值池化和均值池化得到两组特征图,引入特征重标定策略,依照各通道特征图对当前任务的重要程度进行加权,以增强有用特征、抑制无用特征;多尺度核特征加权结构通过在卷积层中同时使用3×3和5×5两种卷积核,并将网络的前几层特征复用后进行加权,以提高重要特征的利用率。对10类牧草图像进行识别实验,结果表明,该方法识别率为94. 1%,比VGG-13网络提高了5.