论文部分内容阅读
The RU/Al2O3 catalysts modified with metal oxide (K2O and La2Os) were prepared via incipient wetness impregnation method from RUCl3.nH2O mixed with nitrate loading on Al2O3 support. The activity of catalysts was evaluated under simulative conditions for the preferential oxidation of CO (CO-PROX) from the hydrogen-rich gas streams produced by reforming gas, and the performances of catalysts were investigated by XRD and TPR. The results showed that the activity temperature of the modified catalysts RU-K2O/Al2O3 and Ru-La2Oa/Al2O3 were lowered approximately 30 ℃ compared with pure RU/AI2O3, and the activity temperature range was widened. The conversion of CO on RU-K2O/Al2O3 and Ru-La2O3/Al2O3 was above 99% at 140-160 ℃, suitable to remove CO in a hydrogen-rich gas and the selectivity of Ru-La2O3/Al2O3 was higher than that of RU-K2O/AI2O3 in the active temperature range. Slight methanation reaction was detected at 220 ℃ and above.