论文部分内容阅读
基于T-S模糊模型,提出了利用神经网络实现非线性系统的辨识。首先,利用一种无监督的聚类算法分析输入输出数据生成初始的结构模型,确定系统的模糊空间和模糊规则数。构造神经网络辨识模型前提参数,使前提参数自适应变化,有较好的自学习能力和优化能力,采用最小二乘法取得结论参数。仿真结果验证了该方法是有效和可行的。