论文部分内容阅读
We propose a geoacoustic inversion scheme employing a vector hydrophone array based on the fact that vector hydrophone can provide more acoustic field information than traditional pressure hydrophones. Firstly, the transmission loss of particle velocities is discussed. Secondly, the sediment sound speed is acquired by a matchedfield processing (MFP) procedure, which is the optimization in combination of the pressure field and vertical particle velocity field. Finally, the bottom attenuation is estimated from the transmission loss difference between the vertical particle velocity and the pressure. The inversion method based on the vector hydrophone array mainly has two advantages: One is that the MFP method based on vector field can decrease the uncertain estimation of the sediment sound speed. The other is that the objective function based on the transmission loss difference has good sensitivity to the sediment attenuation and the inverted sediment attenuation is independent of source level.The wlidity of the inverted parameters is examined by comparison of the numerical results with the experimentaldata.