融合折射原理反向学习的飞蛾扑火算法

来源 :计算机工程与应用 | 被引量 : 0次 | 上传用户:yeluanwu
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
飞蛾扑火算法是一种新型群智能优化算法,目前已经应用于特征选择和图像分割等诸多领域。然而,传统的飞蛾扑火算法后期收敛速度不足且容易陷入局部最优,从而影响了算法的整体性能。为了提高飞蛾扑火算法的优化性能,提出了一种基于折射原理反向学习的飞蛾扑火算法(ROBL-MFO)。该算法首先在飞蛾的更新公式中引入历史最优火焰平均值,使火焰间的信息能够互相交流,提高算法的收敛能力;其次利用随机反向学习策略对解进行反向学习,扩大算法的搜索空间;最后使用折射原理对解进行折射操作,提高种群的多样性,帮助算法跳出局部最优。在六个标
其他文献
针对传统单通道语音增强方法中用带噪语音相位代替纯净语音相位重建时域信号,使得语音主观感知质量改善受限的情况,提出了一种改进相位谱补偿的语音增强算法。该算法提出了基