论文部分内容阅读
针对织物纹理花型人工视觉分类效率低的问题,提出一种基于深度卷积神经网络(CNN)的条状、格子和波点纹理织物的识别分类方法.首先,建立由条状花型、格子花型和波点花型织物组成的图像样本集和标签数据集.然后,分别建立了基于GoogLeNet和AlexNet两种卷积神经网络的织物花型分类模型.最后,通过模型评价指标选择最优的训练迭代期.实验结果表明,利用深度卷积神经网络分类织物花型是可行有效的.