论文部分内容阅读
针对以往的故障诊断系统实时性差、学习能力有限而且工程实现难的问题,提出了一种改进的云加端支持向量机(Cloud and Terminal Support Vector Machines,CaTSVM),并将其运用在电机轴承故障诊断中。CaTSVM方法把传统的故障诊断中的特征提取和特征分类两部分分别运行在终端设备和云端设备中,并且将“流水线”(Pipeline)数据处理结构引入到CaTSVM方法中,有效提升了该方法的实时性。在云端建立故障特征模型库(Cloud Feature Mode Library,CF