论文部分内容阅读
剪接位点的识别作为基因识别中的一个重要环节,一直受到研究人员的关注。考虑到剪接位点附近存在的序列保守性,已有一些基于统计特性的方法被用于剪接位点的识别中,但效果仍有待进一步改进。支持向量机(Support Vector Machines)作为一种新的基于统计学习理论的学习机,近几年有了很大的发展,已被应用在模式识别的许多问题中。文中将其用于剪接位点的识别中,并针对满足GT-AG规则的序列样本中虚假